Molecular Cloning and Expression Analysis of hyp-1 Type PR-10 Family Genes in Hypericum perforatum
نویسندگان
چکیده
Hypericum perforatum L. is an important medicinal plant for the treatment of depression. The plant contains bioactive hypericins that accumulate in dark glands present especially in reproductive parts of the plant. In this study, pathogenesis-related class 10 (PR-10) family genes were identified in H. perforatum, including three previously unidentified members with sequence homology to hyp-1, a phenolic coupling protein that has earlier been suggested to participate in biosynthesis and binding/transportation of hypericin. The PR-10 genes showed constitutive but variable expression patterns in different H. perforatum tissues. They were all expressed at relatively high levels in leaves, variably in roots and low levels in stem and reproductive parts of the plant with no specific association with dark glands. The gene expression was up-regulated in leaves after salicylic acid, abscisic acid and wounding treatments but with variable levels. To study exact location of the gene expression, in situ hybridization of hyp-1 transcripts was performed and the accumulation of the Hyp-1 protein was examined in various tissues. The presence of Hyp-1 protein in H. perforatum tissues mostly paralleled with the mRNA levels. In situ RNA hybridization localized the hyp-1 transcripts predominantly in vascular tissues in root and stem, while in leaf the mRNA levels were high also in mesophyll cells in addition to vasculature. Our results indicate that the studied PR-10 genes are likely to contribute to the defense responses in H. perforatum. Furthermore, despite the location of the hyp-1 transcripts in vasculature, no support for the transportation of the Hyp-1 protein to dark glands was found in the current study. The present results together with earlier data question the role of the hyp-1 as a key gene responsible for the hypericin biosynthesis in dark glands of H. perforatum.
منابع مشابه
Crystal Structure of Hyp-1, a Hypericum perforatum PR-10 Protein, in Complex with Melatonin
Hyp-1, a PR-10-fold protein from Hypericum perforatum, was crystallized in complex with melatonin (MEL). The structure confirms the conserved protein fold and the presence of three unusual ligand binding sites, two of which are internal chambers (1,2), while the third one (3) is formed as an invagination of the protein surface. The MEL ligand in site 1 is well defined while that in site 3 seems...
متن کاملMolecular and biochemical characterization of an enzyme responsible for the formation of hypericin in St. John's wort (Hypericum perforatum L.).
A major gene termed Hyp-1 encoding for hypericin (HyH) biosynthesis was cloned and characterized from Hypericum perforatum (St. John's wort) cell cultures. H. perforatum leaves are widely used as an herbal remedy in the treatment of mild to moderate depression. Hypericin, a photosensitive and red-colored naphthodianthrone, has been reported as the bioactive compound responsible for reversing th...
متن کاملPreparation of a polyclonal antibody against hypericin synthase and localization of the enzyme in red-pigmented Hypericum perforatum L. plantlets.
Hypericum perforatum is well known for its antidepressant and anti-inflammatory activities, for which hypericin and its derivatives are indicated to be the most active compounds. Hypericin synthase (Hyp-1) is the only protein proven to catalyze the synthesis of hypericin. In this study, the full-length cDNA of Hyp-1 was chemically synthesized according to the Hyp-1 sequence in GenBank (accessio...
متن کاملANS complex of St John’s wort PR-10 protein with 28 copies in the asymmetric unit: a fiendish combination of pseudosymmetry with tetartohedral twinning
Hyp-1, a pathogenesis-related class 10 (PR-10) protein from St John's wort (Hypericum perforatum), was crystallized in complex with the fluorescent probe 8-anilino-1-naphthalene sulfonate (ANS). The highly pseudosymmetric crystal has 28 unique protein molecules arranged in columns with sevenfold translational noncrystallographic symmetry (tNCS) along c and modulated X-ray diffraction with inten...
متن کاملAnalysis of SFL1 and SFL2 Promoter Region in Arabidipsis thaliana using Gateway Cloning System
SFL1 and SFl2 (SETH Four Like) genes are two members of SETH4 gene family in Arabidopsis thaliana expressed in saprophytic tissues. In this study, expression of SFL1 and SFL2 genes were studied using Gateway Cloning Technology. Primers were designed for PCR amplification of promoter region of SFL1 (900 bp) and SFL2 (930 bp) genes having attB1 recombination sites using Kod Hi Fi DNA polymerase e...
متن کامل